Jordan Taylor

Jordan Taylor
Associate Professor
429 Peretsman Scully Hall
Ph.D., Washington University in St. Louis
Curriculum Vitæ (146.98 KB)
Summary

We possess a remarkable ability to learn new motor skills and retain memories for those skills throughout life, such as riding a bicycle. The ease with which we perform these skills belies their overwhelming computational complexity. Our research focuses on unraveling the different computational processes involved in solving this motor control problem. A primary area of our research aims at understanding how explicit, cognitive strategies interact with implicit motor adaptation during skill acquisition. Specifically, how do novel movement strategies arise, what are the functional consequences of their interaction with learning, and what are their respective neural systems? Ultimately, we hope that this work can lead to the development of optimal training protocols that can guide learning towards different, but still functioning learning mechanisms following stroke or disease.

Representative Publications

McDougle S.D., Butcher P.A., Parvin D.E., Mushtaq F., Niv Y., Ivry R.B., & Taylor J.A. (2019). Neural signatures of prediction errors in a decision making task are modulated by action execution failures. Current Biology, 29:1-8.

PDF (1.6 MB)

McDougle S.D., & Taylor J.A. (2019). Dissociable cognitive strategies for sensorimotor learning. Nature Communications, 10(1):40.

PDF (1.27 MB)

Butcher P.A., & Taylor J.A. (2018). Decomposition of a sensory-prediction error signal for visuomotor adaptation. Journal of Experimental Psychology: Human Perception and Performance, 44(2):175-194.

PDF (1.19 MB)

Hutter S.A., & Taylor J.A. (2018). Relative sensitivity of explicit re-aiming and implicit motor adaptation. Journal of Neurophysiology, 120:2640-2648.

PDF (665.54 KB)

Bond K.M., & Taylor J.A. (2017). Structural learning in a visuomotor adaptation task is explicitly accessible. eNeuro, 4(4).

PDF (2.56 MB)